NIH Scientists Map Genetic Changes that Drive Tumors in a Common Pediatric Soft-Tissue Cancer
Scientists have mapped the genetic changes that drive tumours in rhabdomyosarcoma, a pediatric soft-tissue cancer, and found that the disease is characterized by two distinct genotypes. The genetic alterations identified in this malignancy could be useful in developing targeted diagnostic tools and treatments for children with the disease. The study, by researchers at the National Cancer Institute (NCI), part of the National Institutes of Health, and their colleagues, appeared in the 23 January 2014, issue of the journal Cancer Discovery.
Rhabdomyosarcoma is the most common soft-tissue sarcoma in children and affects muscles in any part of the body. Among patients diagnosed with non-metastasized disease, about 80% survive at least 5 years, although they may experience substantial treatment-related toxic effects. However, for those with metastatic disease, the 5-year survival rate is about 30% even with aggressive treatment.
NCI’s effort to characterize the genetic events that contribute to rhabdomyosarcoma was led by Javed Khan, MD, head of the Oncogenomics Section, Pediatric Oncology Branch, Center for Cancer Research, and Jack Shern, MD, a clinical fellow.
“These studies are very difficult to do because tissue acquisition and validation is so complex,” said Khan. “It must be noted therefore that this work would not have been possible without our brave pediatric patients and their families. In the face of their life-threatening disease, they offered their tumours for study knowing that they would not personally benefit from this work but in the hope that investigators might learn lessons that would help children diagnosed with rhabdomyosarcoma in the future.”
Khan’s team used a number of advanced sequencing techniques to investigate the genetic changes in a total of 147 rhabdomyosarcoma tumours which were paired with normal tissue samples. These sequencing tools allowed them to unravel the complex molecular events that occur in tumour cells, compare normal DNA with tumour DNA, identify mutations in genes, and determine exactly which genes are turned on (activated) or turned off (deactivated), leading to progression of this cancer.
Through their studies, they identified two distinct genotypes of rhabdomyosarcoma tumors. The first genotype is characterized by either a PAX3 or PAX7 fusion gene; a fusion gene is a gene made by joining parts of two different genes. The second genotype lacks a PAX fusion gene but harbors mutations in key signaling pathways; a signaling pathway is a group of proteins that work together to regulate one or more cell functions, such as cell division or cell death.
The researchers also found that, as in other types of pediatric cancers, the overall number of alterations in tumour DNA that develop over the children’s lifespan (known as somatic mutations) were relatively low compared with DNA alterations that children were born with. The somatic mutation rate was especially low in tumours with a PAX fusion gene. Nevertheless, they did find relatively frequent somatic mutations in several genes, including NRAS, KRAS, HRAS, FGFR4, PIK3CA, CTNNB, all of which had previously been found to be mutated in rhabdomyosarcoma, as well as the genes FBXW7 and BCOR, which had not been previously associated with this disease.
Moreover, they identified mutations in additional genes in the RAS/PIK3CAsignaling pathway. Overall, alterations in this pathway were found in 93% of rhabdomyosarcoma tumors. Intriguingly, many of the genes mutated in the tumors that did not have a PAX fusion gene were found to be turned on or off by proteins produced by PAX fusion genes.
“Although more work is needed, our study may provide researchers with the rationale to develop genomics-guided therapeutic interventions with greater efficacy and fewer side effects than the treatments options currently available for pediatric patients with rhabdomyosarcoma,” Shern said.
Building on this research, Khan and his team will design and test interventions that target the genetic drivers identified in this genomic analysis of rhabdomyosarcoma.
Related News
-
News A Day in the Life of a Start-Up Founder and CEO
At CPHI we work to support Start-Up companies in the pharmaceutical industry and recognise the expertise and innovative angles they bring to the field. Through our Start-Up Programme we have gotten to know some of these leaders, and in this Day in the ... -
News Biopharmaceutical manufacturing boost part of new UK government budget
In their national budget announced by the UK Labour Party, biopharmaceutical production and manufacturing are set to receive a significant boost in capital grants through the Life Sciences Innovative Manufacturing Fund (LSIMF). -
News CPHI Podcast Series: The power of proteins in antibody drug development
In the latest episode of the CPHI Podcast Series, Lucy Chard is joined by Thomas Cornell from Abzena to discuss protein engineering for drug design and development. -
News Amgen sues Samsung biologics unit over biosimilar for bone disease
Samsung Bioepis, the biologics unit of Samsung, has been issued a lawsuit brought forth by Amgen over proposed biosimilars of Amgen’s bone drugs Prolia and Xgeva. -
News CPHI Podcast Series: Why we need to consider women in clinical trials
The latest episode of the CPHI Podcast Series with Lucy Chard covers women's health, specifically women's representation in clinical trials, the associated bias, and the impacts on health for this population. -
News US FDA does not approve MDMA therapy for PTSD, requests more data
The MDMA-based therapeutic developed by Lykos Therapeutics, a California-based Public Benefit Corporation (PBC), has been reviewed and unapproved by the US FDA. The regulator has requested additional phase III trial data for further safety and efficacy... -
News Novartis and Viatris latest facing lawsuit over HeLa cell misuse
Global pharmaceutical companies Novartis and Viatris are the latest hit with a lawsuit claim pertaining to alleged misuse of the ‘HeLa’ cell line from the estate of woman whose cancerous tissue cells were taken without consent. -
News Sanofi invests billions into Frankfurt insulin production site
French pharmaceutical company Sanofi have announced an investment of EUR1.3 billion at their existing BioCampus site in Frankfurt am Main for the expansion of insulin production.
Position your company at the heart of the global Pharma industry with a CPHI Online membership
-
Your products and solutions visible to thousands of visitors within the largest Pharma marketplace
-
Generate high-quality, engaged leads for your business, all year round
-
Promote your business as the industry’s thought-leader by hosting your reports, brochures and videos within your profile
-
Your company’s profile boosted at all participating CPHI events
-
An easy-to-use platform with a detailed dashboard showing your leads and performance