This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

News
24 Sep 2014

NIH Funds Next Phase of Tissue Chip for Drug Screening Programme

The National Institutes of Health will award funds to support the next phase of its Tissue Chip for Drug Screening programme to improve ways of predicting drug safety and effectiveness. Researchers will collaborate over 3 years to refine existing 3-D human tissue chips and combine them into an integrated system that can mimic the complex functions of the human body. Led by the National Center for Advancing Translational Sciences (NCATS), the programme will support 11 institutions at $17 million in 2014 with additional support over the remaining 2 years if funds are available.

 

Because these tissue chip systems will closely mimic human function, scientists can probe the tissue chips in ways that they aren’t able to do in people, and the knowledge gained may provide critical clues to disease progression and insights into the development of potential therapeutics.

 

Fifteen NIH Institutes and Centers are involved in the co-ordination of this programme. Current funding is being provided by NCATS, the National Institute for Biomedical Imaging and  Bioengineering, the National Cancer Institute, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Environmental Health Sciences, NIH Common Fund, and NIH Office of Research on Women’s Health.

 

Researchers create human tissue chips using techniques that result in miniature models of living organ tissues on transparent microchips. Ranging in size from a quarter to a house key, the chips are lined with living cells and contain features designed to replicate the complex biological functions of specific organs.

 

“The development of tissue chips is a remarkable marriage of biology and engineering, and has the potential to transform preclinical testing of candidate treatments, providing valuable tools for biomedical research,” said NIH Director Francis S. Collins, MD, PhD.

 

Approximately 80% of candidate drugs fail in human clinical trials because they are found to be unsafe or ineffective. More than 30% of promising medications fail due to toxicity, despite promising preclinical studies in animal and cell models. These models can be costly and poor predictors of drug response in humans.

 

“NCATS aims to get more treatments to more patients more efficiently,” said NCATS Director Christopher P. Austin, MD. “That is exactly why we are supporting the development of human tissue chip technology, which could be revolutionary in providing a faster, more cost-effective way of predicting the failure or success of drugs prior to investing in human clinical trials.”

Related News