New understanding of the mechanism of neurodegeneration leads to a novel approach to treatment for Alzheimer’s disease
Innovative drug prototype shown to block damaging activity in human cell lines suggests a promising strategy for future therapeutics.
Neuro-Bio describes in Neuropharmacology a new model for the mechanism of neurodegeneration leading to Alzheimer’s disease and its potential for new treatments.
Alzheimer’s is characterised by, amongst other factors, the presence of amyloid, in its various forms, and hyperphosphorylated tau leading to cognitive impairment. The research published suggests that a previously undiscovered mechanism in a key group of neurons affected in a neurodegenerating brain is the key driver of the continuing cycle of neuronal cell death. It could be possible to halt the progression of the disease by intercepting this mechanism.
Researchers at Neuro-Bio have now validated a novel theory for the continuing cycle of neuronal death that typifies Alzheimer’s and other neurodegenerative disorders such as Parkinson’s and Motor Neurone Disease. The key driver is a 14 amino acid peptide (‘AChE peptide’) that originates from acetylcholinesterase (AChE), an enzyme essential in breaking down a well-known chemical messenger between neurons, but increasingly recognised as a signalling molecule with non-enzymatic functions. Although the existence of the AChE peptide and its link to neurodegeneration have been previously proposed in Professor Greenfield’s work, these are the first reports of its detection in both human and rat brain and its actions in driving an Alzheimer-like biochemical profile.
The two consecutive papers in Neuropharmacology report raised levels of the novel peptide in Alzheimer’s midbrain and cerebrospinal fluid compared with controls, and demonstrate that, in vitro, the peptide drives production of both amyloid and hyperphosphorylated tau. In the first paper, the damaging effects of either the AChE peptide or amyloid are shown to be blocked by a novel prototype drug (NBP-14), a cyclised form of the AChE peptide. NBP-14 intercepts the action of the AChE peptide on the alpha-7 nicotinic receptor, which is found on the outer surface of neuronal cells. In the second paper, the effects of the AChE peptide and their blockade by NBP-14 are demonstrated in ex vivo rat basal forebrain, using real-time optical imaging of large-scale, transient ‘neuronal assemblies’.
Professor Susan Greenfield, CEO of Neuro-Bio and senior author on both papers, commented: “These publications are the culmination of some 40 years research from our lab building up a picture indicating that the naturally occurring AChE peptide is a pivotal signalling molecule in a mechanism underlying Alzheimer’s and related disorders. We are encouraged by the potential for the prototype compound NBP-14 to block the activity of this peptide and also by the possibility of monitoring the peptide as a biomarker for early, even pre-symptomatic diagnosis.”
Professor Gary Small of the Brain Research Institute, University of California, Los Angeles, and member of the Neuro-Bio Scientific Advisory Board added: “This recent work showing that a peptide derived from acetylcholinesterase is elevated in the Alzheimer brain and that a synthetic version of this peptide enhances calcium influx and eventual production of amyloid beta and tau phosphorylation via an allosteric site on the alpha-7 nicotinic receptor is extremely exciting. The fact that a synthetic cyclic version of this peptide is neuroprotective makes this innovative therapeutic approach highly promising.”
Professor Margaret Esiri of the Neuropathology Dept at the John Radcliffe Hospital Oxford and member of the Neuro-Bio Scientific Advisory Board commented: “After quite a number of years of research this is an important staging-post at which Neuro-Bio can develop aspects of the work in new directions and with new confidence. This I can see is really exciting and gives new opportunities to increase the pace of the research.”
Professor Terry Sejnowski, Investigator at the Howard Hughes Medical Institute and Francis Crick Professor at The Salk Institute said: “Any new approach to Alzheimer’s disease, which is increasing in prevalence as we live longer, that shows as much promise as this new peptide should be quickly brought to the attention of the scientific community. The dominant focus on beta amyloid has side-tracked the scientific community and the potential new direction will be a surprise to Alzheimer’s researchers.”
Related News
-
News CPHI Podcast Series: The power of proteins in antibody drug development
In the latest episode of the CPHI Podcast Series, Lucy Chard is joined by Thomas Cornell from Abzena to discuss protein engineering for drug design and development. -
News Amgen sues Samsung biologics unit over biosimilar for bone disease
Samsung Bioepis, the biologics unit of Samsung, has been issued a lawsuit brought forth by Amgen over proposed biosimilars of Amgen’s bone drugs Prolia and Xgeva. -
News CPHI Podcast Series: Why we need to consider women in clinical trials
The latest episode of the CPHI Podcast Series with Lucy Chard covers women's health, specifically women's representation in clinical trials, the associated bias, and the impacts on health for this population. -
News US FDA does not approve MDMA therapy for PTSD, requests more data
The MDMA-based therapeutic developed by Lykos Therapeutics, a California-based Public Benefit Corporation (PBC), has been reviewed and unapproved by the US FDA. The regulator has requested additional phase III trial data for further safety and efficacy... -
News Novartis and Viatris latest facing lawsuit over HeLa cell misuse
Global pharmaceutical companies Novartis and Viatris are the latest hit with a lawsuit claim pertaining to alleged misuse of the ‘HeLa’ cell line from the estate of woman whose cancerous tissue cells were taken without consent. -
News Sanofi invests billions into Frankfurt insulin production site
French pharmaceutical company Sanofi have announced an investment of EUR1.3 billion at their existing BioCampus site in Frankfurt am Main for the expansion of insulin production. -
News Novel oral Type 1 diabetes drug gains US FDA IND designation
A University of Alabama at Birmingham startup has gained FDA clearance for Investigational New Drug clinical trials for an oral Type 1 diabetes drug, a milestone for diabetes treatment. -
News A Day in the Life of a Vice President in R&D & Engineering
In the Day in the Life of Series, we've already had the chance to get to know a range of people in various roles in the pharma industry. In the latest interview we get a glimpse into the R&D side of things from Jennifer Sorrells, Vice Presiden...
Position your company at the heart of the global Pharma industry with a CPHI Online membership
-
Your products and solutions visible to thousands of visitors within the largest Pharma marketplace
-
Generate high-quality, engaged leads for your business, all year round
-
Promote your business as the industry’s thought-leader by hosting your reports, brochures and videos within your profile
-
Your company’s profile boosted at all participating CPHI events
-
An easy-to-use platform with a detailed dashboard showing your leads and performance