Manufactured stem cells to advance clinical research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Researchers supported by the National Institutes of Health developed a clinical-grade stem cell line, which has the potential to accelerate the advance of new medical applications and cell-based therapies for millions of people suffering from such ailments as Alzheimer’s disease, Parkinson’s disease, spinal cord injury, diabetes, and muscular dystrophy. The stem cells were developed by isolating human umbilical cord blood cells following a healthy birth, and coaxing them back into a pluripotent state, or one in which they have the potential to develop into any cell type in the body. Cells developed in this manner are called induced pluripotent stem cells (iPSCs). With NIH support, these cells were manufactured by Lonza, Walkersville, Maryland, and described in a publication by Behnam Baghbaderani, and colleagues in Stem Cell Reports.
These clinical-grade stem cells are different from the more common laboratory-grade cells — those used in most scientific publications — because unlike laboratory-grade stem cells, clinical-grade stem cells can be used for clinical applications in humans. The distinctive feature of this cell line is that it was developed under cGMP, a set of stringent regulations enforced by the FDA, which ensures each batch of cells produced will meet quality and safety standards required for potential clinical use. The NIH Common Fund’s Regenerative Medicine program supported the manufacturing of this cell line.
“The Common Fund aims to accelerate research progress by developing new tools and resources for the biomedical research community through strategic investments in high-impact research,” said James M. Anderson, director of the NIH Division of Program Coordination, Planning, and Strategic Initiatives, which houses the Common Fund. “Since meeting cGMP guidelines is very time-intensive and costly, providing access to clinical-grade stem cells removes a significant barrier in the development of cell-based therapies.”
Significant progress with stem cell therapy in mice is already underway. Researchers have reversed diabetic conditions in mice using iPSC-generated insulin-producing cells and have partially restored limb function in mice with spinal cord injuries. Translating these studies into humans is the next challenge, and by making clinical-grade stem cells available, NIH hopes to speed up the development of new stem cell therapies for patients.
The clinical-grade stem cells, as well as research-grade cells cultured from the same cell line, are available for order and will be stored and distributed by the National Institute of Neurological Disorders and Stroke (NINDS) Human Cell and Data Repository (NHCDR), which is supported through a NINDS grant to RUCDR Infinite Biologics at Rutgers University, Piscataway, New Jersey. RUCDR also distributes laboratory-grade cell lines made by the NIH Regenerative Medicine Program. Laboratory-grade cells can be used for research that lays the foundation for eventual use of clinical-grade cells, such as determining the conditions necessary to guide the iPSCs to become specific cell types like neurons, insulin-producing beta-cells, or heart cells.
“As part of our longstanding commitment to providing critical biospecimens of the highest quality to investigators around the world, we share the excitement of being able to provide access to this resource,” said Dr Michael Sheldon, director of the Stem Cell Center at RUCDR. “The Regenerative Medicine Program’s laboratory-grade stem cells are frequently requested by researchers. Given the therapeutic potential of the cGMP clinical-grade stem cells we anticipate a strong demand from both the academic and corporate sectors.”
Related News
-
News A Day in the Life of a Start-Up Founder and CEO
At CPHI we work to support Start-Up companies in the pharmaceutical industry and recognise the expertise and innovative angles they bring to the field. Through our Start-Up Programme we have gotten to know some of these leaders, and in this Day in the ... -
News Biopharmaceutical manufacturing boost part of new UK government budget
In their national budget announced by the UK Labour Party, biopharmaceutical production and manufacturing are set to receive a significant boost in capital grants through the Life Sciences Innovative Manufacturing Fund (LSIMF). -
News CPHI Podcast Series: The power of proteins in antibody drug development
In the latest episode of the CPHI Podcast Series, Lucy Chard is joined by Thomas Cornell from Abzena to discuss protein engineering for drug design and development. -
News Amgen sues Samsung biologics unit over biosimilar for bone disease
Samsung Bioepis, the biologics unit of Samsung, has been issued a lawsuit brought forth by Amgen over proposed biosimilars of Amgen’s bone drugs Prolia and Xgeva. -
News CPHI Podcast Series: Why we need to consider women in clinical trials
The latest episode of the CPHI Podcast Series with Lucy Chard covers women's health, specifically women's representation in clinical trials, the associated bias, and the impacts on health for this population. -
News US FDA does not approve MDMA therapy for PTSD, requests more data
The MDMA-based therapeutic developed by Lykos Therapeutics, a California-based Public Benefit Corporation (PBC), has been reviewed and unapproved by the US FDA. The regulator has requested additional phase III trial data for further safety and efficacy... -
News Novartis and Viatris latest facing lawsuit over HeLa cell misuse
Global pharmaceutical companies Novartis and Viatris are the latest hit with a lawsuit claim pertaining to alleged misuse of the ‘HeLa’ cell line from the estate of woman whose cancerous tissue cells were taken without consent. -
News Sanofi invests billions into Frankfurt insulin production site
French pharmaceutical company Sanofi have announced an investment of EUR1.3 billion at their existing BioCampus site in Frankfurt am Main for the expansion of insulin production.
Position your company at the heart of the global Pharma industry with a CPHI Online membership
-
Your products and solutions visible to thousands of visitors within the largest Pharma marketplace
-
Generate high-quality, engaged leads for your business, all year round
-
Promote your business as the industry’s thought-leader by hosting your reports, brochures and videos within your profile
-
Your company’s profile boosted at all participating CPHI events
-
An easy-to-use platform with a detailed dashboard showing your leads and performance