Gene-Silencing Data now Publicly Available to Help Scientists Better Understand Disease
For the first time, large-scale information on the biochemical makeup of small interfering RNA (siRNA) molecules is available publicly. These molecules are used in research to help scientists better understand how genes function in disease. Making these data accessible to researchers worldwide increases the potential of finding new treatments for patients.
NIH’s National Center for Advancing Translational Sciences (NCATS) collaborated with Life Technologies Corporation of Carlsbad, California, which owns the siRNA information, to make it available to all researchers.
The siRNA molecules, which can selectively inhibit the activity of genes, are used in RNA interference (RNAi) research. RNAi is a natural process that cells use to control the activity of specific genes. Its discovery led to the 2006 Nobel Prize in Physiology or Medicine.
Last month, a team of NIH scientists, led by Richard Youle, PhD, at the National Institute of Neurological Disorders and Stroke (NINDS), and Scott Martin, PhD, at NCATS, used RNAi to find genes that linked to Parkinson’s disease, a devastating movement disorder. The new genes may represent new starting points for developing treatments. The study results were published online in the 24 November 2013 issue of Nature External Web Site Policy.
Scientists have harnessed the power of RNAi to study the function of many individual genes by reducing their activity levels, or silencing them. This process enables researchers to identify genes and molecules that are linked to particular diseases. To do this, researchers use siRNAs, which are RNA molecules that have a complementary chemical makeup, or sequence, to that of a targeted gene. While the gene is silenced, researchers look for changes in cell functions to gain insights about what it normally does. By silencing genes in the cell one at a time, scientists can explore and understand their complex relation to other genes in the context of disease.
Until now, a major limitation in the scientific community’s use of RNAi data has been the lack of a publicly available dataset, along with siRNA sequences directed against every human gene. Historically, providers have not allowed publishing of proprietary siRNA sequence information. To address this problem, NCATS and Life Technologies are providing all researchers with access to siRNA data from Life Technologies’ Silencer Select siRNA library, which includes 65,000 siRNA sequences targeting more than 20,000 human genes. Simultaneously, NCATS is releasing complementary data on the effects of each siRNA molecule on biological functions. All of this information is available to the public free-of-charge through NIH’s public database PubChem.
“Producing and releasing these data demonstrate NCATS’ commitment to speeding the translational process for all diseases,” said NCATS Director Christopher P. Austin, MD. “The Human Genome Project showed that public data release is critical to scientific progress. Similarly, I believe that making RNAi data publicly available will revolutionise the study of biology and medicine.”
Experts from the NIH RNAi initiative, administered by NCATS’ Division of Pre-Clinical Innovation, conduct screens for NIH investigators. They will add new RNAi data into PubChem on an ongoing basis, making the database a growing resource for gene function studies.
“By releasing all our siRNA sequences, we are enabling novel strategies to advance fundamental understanding of biology and discovery of new potential drug targets,” said Mark Stevenson, president and chief operating officer of Life Technologies.
NIH invites other companies that sell siRNA libraries and researchers who conduct genome-wide RNAi screens with the Life Technologies library to deposit sequence data and biological activity information into PubChem. For assistance with submitting data to PubChem, researchers may contact [email protected].
“Translation of siRNA library screening results into impactful downstream experiments is the ultimate goal of scientists using our library,” said Alan Sachs, MD, PhD, head of global research and development for Life Technologies. “The availability of these sequence data should greatly facilitate this effort because scientists no longer will be blinded to the actual sequence they are targeting.”
Related News
-
News A Day in the Life of a Start-Up Founder and CEO
At CPHI we work to support Start-Up companies in the pharmaceutical industry and recognise the expertise and innovative angles they bring to the field. Through our Start-Up Programme we have gotten to know some of these leaders, and in this Day in the ... -
News Biopharmaceutical manufacturing boost part of new UK government budget
In their national budget announced by the UK Labour Party, biopharmaceutical production and manufacturing are set to receive a significant boost in capital grants through the Life Sciences Innovative Manufacturing Fund (LSIMF). -
News CPHI Podcast Series: The power of proteins in antibody drug development
In the latest episode of the CPHI Podcast Series, Lucy Chard is joined by Thomas Cornell from Abzena to discuss protein engineering for drug design and development. -
News Amgen sues Samsung biologics unit over biosimilar for bone disease
Samsung Bioepis, the biologics unit of Samsung, has been issued a lawsuit brought forth by Amgen over proposed biosimilars of Amgen’s bone drugs Prolia and Xgeva. -
News CPHI Podcast Series: Why we need to consider women in clinical trials
The latest episode of the CPHI Podcast Series with Lucy Chard covers women's health, specifically women's representation in clinical trials, the associated bias, and the impacts on health for this population. -
News US FDA does not approve MDMA therapy for PTSD, requests more data
The MDMA-based therapeutic developed by Lykos Therapeutics, a California-based Public Benefit Corporation (PBC), has been reviewed and unapproved by the US FDA. The regulator has requested additional phase III trial data for further safety and efficacy... -
News Novartis and Viatris latest facing lawsuit over HeLa cell misuse
Global pharmaceutical companies Novartis and Viatris are the latest hit with a lawsuit claim pertaining to alleged misuse of the ‘HeLa’ cell line from the estate of woman whose cancerous tissue cells were taken without consent. -
News Sanofi invests billions into Frankfurt insulin production site
French pharmaceutical company Sanofi have announced an investment of EUR1.3 billion at their existing BioCampus site in Frankfurt am Main for the expansion of insulin production.
Position your company at the heart of the global Pharma industry with a CPHI Online membership
-
Your products and solutions visible to thousands of visitors within the largest Pharma marketplace
-
Generate high-quality, engaged leads for your business, all year round
-
Promote your business as the industry’s thought-leader by hosting your reports, brochures and videos within your profile
-
Your company’s profile boosted at all participating CPHI events
-
An easy-to-use platform with a detailed dashboard showing your leads and performance