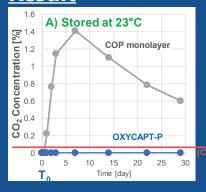
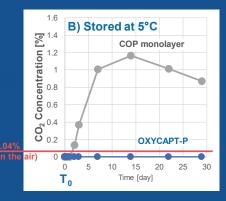
OXYCAPT™ Multilayer Plastic Vial

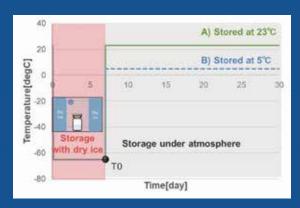
for Biologics & Cell Gene Therapy Products

CO2 Permeation after Freezing & Thawing

Sample


Entry	Vial	Closure	Quantity (for each condition)
1	OXYCAPT-P (10mL)	BBR + Aluminum Cap	5
2	COP (10mL)	BBR + Aluminum Cap	5


Procedure


Each vial was:

- 1) filled with N2 in chamber.
- 2) sealed with BBR & AL cap by auto-crimper
- 3) put into inslation box with dry ice and stored for 7 days.
- 4) taken out and stored at 23 or 5° C.
- 5) measured with CO₂ analyzer at each time point.

Result

Theory of CO2 Permeation

There are 2 phenomena of gas molecule permeation through plastics;

- A) Dissolution
- **B)** Diffusion

	-80°C (Storage)	23°C (Thawing)	23°C (Before Injection)
Dissolution	Higher	Lower	
Diffusion	Slower	Faster	
	CO ₂ 0 % Step 1: Dissolution	Headspace Outside Atmosphe Step 2: Diffusion	Headspace Outside

Permiation Scheme

$$P = P_0 \exp(-\frac{E_p}{RT})$$

$$P = S \cdot D$$

- S: Solubility coefficient
- D: Diffusion coefficient
- P: Permeability coefficient

