3D Model Evaluates Cancer Progress
A new application report** from AMSBIO introduces a more predictive and realistic model for early-stage drug screening of cancer therapeutics.
The report shows that incorporating vascular and stromal cells with breast cancer tumour spheroids allows them to more closely mimic the extracellular environment, cellular architecture and behaviour of actual tumors; this triculture promotes growth, invasion and endothelial recruitment.
Current 2D models for evaluating breast cancer progression do not provide a comprehensive, physiological approach to modeling the complex tumour microenvironment. 3D Tumour spheroids mark a significant advance over such 2D models in mimicking tumour physiology: like tumors, spheroid cultures exhibit cell-cell bond formation, comparable morphology, elevated cell survival and proliferation in their outer layers, while in the inner layers, they have reduced proliferation rates and a hypoxic core.
But while such Multi-Cellular Tumor Spheroids (MCTS) do provide a more physiological tumour model than 2D, other cell types are also essential for tumour behavior and cancer progression. Tissue vasculature provides a critical component, given the metabolic requirements of a growing tumor and known tumor-vascular interactions: so incorporating endothelial tubules with the MCTS adds interactions between vascular networks and growing tumors to the model. At the same time, stromal cells promote cell proliferation, dissemination, and drug resistance during cancer development.
In the report, a novel 3D spheroid triculture model for evaluating breast cancer progression is described. In this model three different cell types are cultured together: a breast cancer cell line, together with human umbilical vein endothelial cells [HUVECs] and human adipose-derived mesenchymal stem cells [hMSCs] as an in vitro model for breast cancers in drug screening studies.
The proper physiology for each of these cell types is promoted using extracellular matrix proteins; and their activities and interactions assessed. The report demonstrates that in this triculture system, breast cancer MCTS exhibit cell-cell interactions with endothelial tubules and stromal cells, and there is an increase in both cell proliferation and invasion over the standard spheroid monoculture model.
To download a copy of this application report, click here.
Related News
-
News CPHI Podcast Series: The power of proteins in antibody drug development
In the latest episode of the CPHI Podcast Series, Lucy Chard is joined by Thomas Cornell from Abzena to discuss protein engineering for drug design and development. -
News Amgen sues Samsung biologics unit over biosimilar for bone disease
Samsung Bioepis, the biologics unit of Samsung, has been issued a lawsuit brought forth by Amgen over proposed biosimilars of Amgen’s bone drugs Prolia and Xgeva. -
News CPHI Podcast Series: Why we need to consider women in clinical trials
The latest episode of the CPHI Podcast Series with Lucy Chard covers women's health, specifically women's representation in clinical trials, the associated bias, and the impacts on health for this population. -
News US FDA does not approve MDMA therapy for PTSD, requests more data
The MDMA-based therapeutic developed by Lykos Therapeutics, a California-based Public Benefit Corporation (PBC), has been reviewed and unapproved by the US FDA. The regulator has requested additional phase III trial data for further safety and efficacy... -
News Novartis and Viatris latest facing lawsuit over HeLa cell misuse
Global pharmaceutical companies Novartis and Viatris are the latest hit with a lawsuit claim pertaining to alleged misuse of the ‘HeLa’ cell line from the estate of woman whose cancerous tissue cells were taken without consent. -
News Sanofi invests billions into Frankfurt insulin production site
French pharmaceutical company Sanofi have announced an investment of EUR1.3 billion at their existing BioCampus site in Frankfurt am Main for the expansion of insulin production. -
News Novel oral Type 1 diabetes drug gains US FDA IND designation
A University of Alabama at Birmingham startup has gained FDA clearance for Investigational New Drug clinical trials for an oral Type 1 diabetes drug, a milestone for diabetes treatment. -
News A Day in the Life of a Vice President in R&D & Engineering
In the Day in the Life of Series, we've already had the chance to get to know a range of people in various roles in the pharma industry. In the latest interview we get a glimpse into the R&D side of things from Jennifer Sorrells, Vice Presiden...
Position your company at the heart of the global Pharma industry with a CPHI Online membership
-
Your products and solutions visible to thousands of visitors within the largest Pharma marketplace
-
Generate high-quality, engaged leads for your business, all year round
-
Promote your business as the industry’s thought-leader by hosting your reports, brochures and videos within your profile
-
Your company’s profile boosted at all participating CPHI events
-
An easy-to-use platform with a detailed dashboard showing your leads and performance